UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Abstract

General Description The MAX4249-MAX4257 low-noise, low-distortion operational amplifiers offer Rail-to-Rail ${ }^{\circledR}$ outputs and singlesupply operation down to 2.4 V . They draw $400 \mu \mathrm{~A}$ of quiescent supply current per amplifier while featuring ultra-low distortion (0.0002% THD), as well as low input voltage noise density ($7.9 \mathrm{nv} / \sqrt{\mathrm{Hz}}$) and low input current noise density $(0.5 f \mathrm{~A} / \sqrt{\mathrm{Hz}})$. These features make the devices an ideal choice for portable/battery-powered applications that require low distortion and/or low noise. For additional power conservation, the MAX4249/4251/ 4253/4256 offer a low-power shutdown mode that reduces supply current to $0.5 \mu \mathrm{~A}$ and puts the amplifiers' outputs into a high-impedance state. The MAX4249-MAX4257's outputs swing rail-to-rail and their input common-mode voltage range includes ground. The MAX4250-MAX4254 are unity-gain stable with a gain-bandwidth product of 3 MHz . The MAX4249/ MAX4255/MAX4256/MAX4257 are internally compensated for gains of $+10 \mathrm{~V} / \mathrm{V}$ or greater with a gain-bandwidth product of 22 MHz . The single MAX4250/ MAX4255 are available in space-saving, 5-pin SOT23 packages. The MAX4252 is available in an 8-pin UCSP package and the MAX4253 is available in a 10-pin UCSP package.

Applications
Wireless Communications Devices PA Control
Portable/Battery-Powered Equipment
Medical Instrumentation
ADC Buffers
Digital Scales/Strain Gauges
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. UCSP is a trademark of Maxim Integrated Products, Inc.

Features
Available in Space-Saving UCSP TM, SOT23, and
$\mu M A X ~ P a c k a g e s ~$
Low Distortion: 0.0002\% THD (1k Ω load)
400 SA Quiescent Supply Current per Amplifier
Single-Supply Operation from +2.4V to +5.5V
Input Common-Mode Voltage Range Includes
Ground
Outputs Swing Within 8mV of Rails with a 10k Ω
Load
3MHz GBW Product, Unity-Gain Stable
(MAX4250-MAX4254)
22MHz GBW Product, Stable with Av $\geq 10 \mathrm{~V} / \mathrm{V}$
(MAX4249/MAX4255/MAX4256/MAX4257)
Excellent DC Characteristics
VoS = 70
IBIAS = 1pA
Large-Signal Voltage Gain = 116dB
Low-Power Shutdown Mode:
Reduces Supply Current to 0.5
Places Outputs in a High-Impedance State
400pF Capacitive-Load Handling Capability

Ordering Information

PART	TEMP. RANGE	PIN/BUMP- PACKAGE	TOP MARK
MAX4249ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4249EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4250EUK- -1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	ACCI

Ordering Information continued at end of data sheet. Selector Guide appears at end of data sheet.

Pin Configurations

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V_{DD} to $\mathrm{V}_{S S}$)+6.0V to -0.3 V	
Analog Input Voltage (IN_+, IN_-)....(VDD + 0.3V)	to (VSS - 0.3V)
SHDN Input Voltage................................+6.0V to (VSS - 0.3V)	
Output Short-Circuit Duration to Either SupplyContinuous	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
5 -Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ}$	571 mW
8 -Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	362 mW
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	471 mW
8 -Pin UCSP (derate $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	W
10-Pin UCSP (derate $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{O}$	484 mW

10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 444 mW
14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 667 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Bump Temperature (soldering) (Note 1)
Infrared (15s)
$+220^{\circ} \mathrm{C}$
Vapor Phase (60s) ...2215 ${ }^{\circ} \mathrm{C}$

Note 1: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragrah 7.6, Table 3 for IR/VPR and Convection Reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{C M}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}\right.$ tied to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2,3)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	(Note 4)			2.4		5.5	V
Quiescent Supply Current per Amplifier	IQ	Normal mode	VDD			400		$\mu \mathrm{A}$
			V ${ }_{\text {DD }}$			420	575	
				V, UCSP only		420	655	
		Shutdown mode ($\overline{\text { SHDN }}=$ VSS $)($ Note 2)				0.5	1.5	
Input Offset Voltage (Note 5)	Vos					± 0.07	± 0.75	mV
Input Offset Voltage Tempco	TCVos					0.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	(Note 6)				± 1	± 100	pA
Input Offset Current	Ios	(Note 6)				± 1	± 100	pA
Differential Input Resistance	RIN					1000		$\mathrm{G} \Omega$
Input Common-Mode Voltage Range	$\mathrm{V}_{\text {CM }}$	Guaranteed by	CMRR		-0.2		VDD-1.1	V
Common-Mode Rejection Ratio	CMRR	$V_{S S}-0.2 \mathrm{~V} \leq \mathrm{V}_{\text {c }}$	$u \leq V$		70	115		dB
Power-Supply Rejection Ratio	PSRR	$V_{D D}=2.4$ to 5			75	100		dB
Large-Signal Voltage Gain	Av	$\begin{array}{\|l} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 ; \\ \mathrm{V}_{\text {OUT }}=25 \mathrm{mV} \text { to } \mathrm{V}_{\mathrm{DD}}-4.97 \mathrm{~V} \\ \hline \end{array}$			80	116		dB
		$\begin{array}{\|l} \mathrm{RL}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 ; \\ \mathrm{V}_{\mathrm{OUT}}=150 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}-4.75 \mathrm{~V} \end{array}$			80	112		
Output Voltage Swing	Vout	$\begin{aligned} & \left\|V_{I N+}-V_{I N}-\right\| \geq 10 \mathrm{mV} \\ & R_{L}=10 \mathrm{k} \Omega \text { to } V_{D D / 2} \end{aligned}$		$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {OH }}$		8	25	mV
				VOL - VSS		7	20	

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}\right.$ tied to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)($ Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage Swing	Vout	$\begin{aligned} & \mathrm{IV}_{I N+}-\mathrm{V}_{\mathrm{IN}} \mathrm{I} \geq 10 \mathrm{mV}, \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D / 2} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}$		77	200	mV
			$\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {SS }}$		47	100	
Output Short-Circuit Current	ISC				68		mA
Output Leakage Current	ILEAK	Shutdown mode ($\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{SS}}$), VOUT $=$ V SS to $\mathrm{V}_{\text {DD }}$ (Note 2)			0.001	1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Logic Low	VIL	(Note 2)				$0.2 \times \mathrm{VDD}$	V
$\overline{\text { SHDN }}$ Logic High	V_{IH}	(Note 2)		$0.8 \times \mathrm{V}_{\text {DD }}$			V
$\overline{\text { SHDN }}$ Input Current	IILIIH	$\overline{\text { SHDN }}=\mathrm{V}_{\text {SS }}=\mathrm{V}_{\text {DD }}($ Note 2)			0.5	1.5	$\mu \mathrm{A}$
Input Capacitance					11		pF
Gain Bandwidth Product	GBW	MAX4250-MAX4254			3		MHz
		MAX4249/MAX4255/MAX4256/MAX4257			22		
Slew Rate	SR	MAX4250-MAX4254			0.3		V/us
		MAX4249/MAX4255/MAX4256/MAX4257			2.1		
Peak-to-Peak Input Noise Voltage	$e_{n}(p-p)$	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			760		nVp-p
Input Voltage Noise Density	e_{n}	$f=10 \mathrm{~Hz}$			2.7		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$			8.9		
		$\mathrm{f}=30 \mathrm{kHz}$			7.9		
Input Current Noise Density	in	$\mathrm{f}=1 \mathrm{kHz}$			0.5		$\mathrm{f} / 2 / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion Plus Noise	THD+N	MAX4250-MAX4254 $\mathrm{A}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\text {OUT }}=$ $2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $G N D$ (Note 7)	$\mathrm{f}=1 \mathrm{kHz}$		0.0004		\%
			$\mathrm{f}=20 \mathrm{kHz}$		0.006		
		MAX4249/MAX4255/ MAX4256/MAX4257 $\mathrm{A} V=+1 \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\text {OUT }}=$ $2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $G N D$ (Note 7)	$\mathrm{f}=1 \mathrm{kHz}$		0.0012		
			$\mathrm{f}=20 \mathrm{kHz}$		0.007		
Capacitive-Load Stability		No sustained oscillations			400		pF
Gain Margin	GM	MAX4250-MAX4254, Av = +1V/V			10		dB
		MAX4249/MAX4255/MAX4256/MAX4257,$A \mathrm{~V}=+10 \mathrm{~V} / \mathrm{V}$			12.5		
Phase Margin	ФМ	MAX4250-MAX4254, AV $=+1 \mathrm{~V} / \mathrm{V}$			74		degrees
		MAX4249/MAX4255/MAX4256/MAX4257,$\mathrm{A}_{\mathrm{V}}=+10 \mathrm{~V} / \mathrm{V}$			68		

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+5 V, V_{S S}=0, V_{C M}=0, V_{O U T}=V_{D D} / 2, R\right.$ tied to $V_{D D} / 2, \overline{S H D N}=V_{D D}, T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Settling Time		$\begin{aligned} & \text { To 0.01\%, Vout } \\ & =2 \mathrm{~V} \text { step } \end{aligned}$	MAX4250-MAX4254		6.7		$\mu \mathrm{s}$
			MAX4249/MAX4255/ MAX4256/MAX4257		1.6		
Delay Time to Shutdown	ts	IVDD $=5 \%$ of normal operation	MAX4251/MAX4253		0.8		$\mu \mathrm{s}$
			MAX4249/MAX4256		1.2		
Delay Time to Enable	ten	VOUT $=2.5 \mathrm{~V}$, Vout settles to 0.1\%	MAX4251/MAX4253		8		$\mu \mathrm{s}$
			MAX4249/MAX4256		3.5		
Power-Up Delay Time	tpu	$\mathrm{V}_{\mathrm{DD}}=0$ to 5V step, Vout stable to 0.1\%			6		$\mu \mathrm{s}$

Note 2: $\overline{\text { SHDN }}$ is available on the MAX4249/MAX4251/MAX4253/MAX4256 only.
Note 3: All device specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 4: Guaranteed by the PSRR test.
Note 5: Offset voltage prior to reflow on UCSP.
Note 6: Guaranteed by design.
Note 7: Lowpass-filter bandwidth is 22 kHz for $\mathrm{f}=1 \mathrm{kHz}$ and 80 kHz for $\mathrm{f}=20 \mathrm{kHz}$. Noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT VOLTAGE
vs. OUTPUT LOAD CURRENT

LARGE-SIGNAL VOLTAGE GAIN vs. OUTPUT VOLTAGE SWING

Vout SWING FROM EITHER SUPPLY (mV)

OUTPUT VOLTAGE SWING (VOH)
vs. TEMPERATURE

LARGE-SIGNAL VOLTAGE GAIN vs. OUTPUT VOLTAGE SWING

INPUT OFFSET VOLTAGE vs. COMMON-MODE INPUT VOLTAGE

OUTPUT VOLTAGE SWING (Vol)
vs. TEMPERATURE

LARGE-SIGNAL VOLTAGE GAIN vs. OUTPUT VOLTAGE SWING

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. OUTPUT VOLTAGE

MAX4249/MAX4255/MAX4256/MAX4257

INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE

MAX4250-MAX4254 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

\qquad Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, input noise floor of test equipment $=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for all distortion measurements, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4249/MAX4255/MAX4256/MAX4257 LARGE-SIGNAL PULSE RESPONSE

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

PIN								NAME	FUNCTION
$\begin{array}{\|l\|l\|} \hline \text { MAX4250/ } \\ \text { MAX4255 } \end{array}$	$\begin{aligned} & \text { MAX4251/ } \\ & \text { MAX4256 } \end{aligned}$	$\begin{aligned} & \text { MAX4252/ } \\ & \text { MAX4257 } \end{aligned}$	MAX4252	$\begin{aligned} & \text { MAX4249/ } \\ & \text { MAX4253 } \end{aligned}$			MAX4254		
5 SOT23	$8 \mathrm{SO} /$ $\mu \mathrm{MAX}$	$8 \text { SO/ }$ $\mu \mathrm{MAX}$	8 UCSP	$\begin{gathered} 10 \\ \text { UCSP } \end{gathered}$	$\begin{gathered} 10 \\ \mu \mathrm{MAX} \end{gathered}$	14 SO	14 SO		
1	6	1,7	A1, A3	$\begin{aligned} & \mathrm{A} 1, \\ & \mathrm{C} 1 \end{aligned}$	1, 9	1,13	1, 7, 8, 14	OUT, OUTA, OUTB, OUTC, OUTD	Amplifier Output
2	4	4	C2	B4	4	4	11	VSS	Negative Supply. Connect to ground for single-supply operation
3	3	3, 5	C1, C3	$\begin{aligned} & \text { A3, } \\ & \text { C3 } \end{aligned}$	3, 5	3, 11	$\begin{gathered} 3,5,10 \\ 12 \end{gathered}$	IN+, INA+, INB+, INC+ IND+	Noninverting Amplifier Input
4	2	2, 6	B1, B3	$\begin{aligned} & \text { A2, } \\ & \text { C2 } \end{aligned}$	2, 6	2, 12	2, 6, 9, 13	IN-, INA-, INB-, INC-, IND-	Inverting Amplifier Input
5	7	8	A2	B1	8	14	4	$V_{D D}$	Positive Supply
-	8	-	-	$\begin{aligned} & \mathrm{A} 4, \\ & \mathrm{C} 4 \end{aligned}$	-	5, 9	-	$\frac{\overline{\mathrm{SHDN}},}{\frac{\text { SHDNA, }}{\text { SHDNB }}}$	Shutdown Input, Connect to VDD or leave unconnected for normal operation (amplifier(s) enabled).
-	1,5	-	-	-	-	$\begin{aligned} & 5,7 \\ & 8,10 \end{aligned}$	-	N.C.	No Connection. Not internally connected.
-	-	-	B2	$\begin{aligned} & \mathrm{B2}, \\ & \mathrm{B3} \end{aligned}$	-	-	-	-	Not populated with solder sphere

Detailed Description

The MAX4249-MAX4257 single-supply operational amplifiers feature ultra-low noise and distortion while consuming very little power. Their low distortion and low noise make them ideal for use as preamplifiers in wide dynamic-range applications, such as 16-bit ana-log-to-digital converters (see Typical Operating Circuit). Their high-input impedance and low noise are also useful for signal conditioning of high-impedance sources, such as piezoelectric transducers.
These devices have true rail-to-rail ouput operation, drive loads as low as $1 \mathrm{k} \Omega$ while maintining DC accuracy, and can drive capactive loads up to 400 pF without
oscillation. The input common-mode voltage range extends from VDD - 1.1V to 200mV beyond the negative rail. The push/pull output stage maintains excellent DC characteristics, while delivering up to $\pm 5 \mathrm{~mA}$ of current.
The MAX4250-4254 are unity-gain stable, whereas, the MAX4249/MAX4255/MAX4256/MAX4257 have a higher slew rate and are stable for gains $\geq 10 \mathrm{~V} / \mathrm{V}$. The MAX4249/MAX4251/MAX4253/MAX4256 feature a lowpower shutdown mode, which reduces the supply current to $0.5 \mu \mathrm{~A}$ and disables the outputs.

Low Distortion

Many factors can affect the noise and distortion that the device contributes to the input signal. The following

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

guidelines offer valuable information on the impact of design choices on Total Harmonic Distortion (THD).
Choosing proper feedback and gain resistor values for a particular application can be a very important factor in reducing THD. In general, the smaller the closedloop gain, the smaller the THD generated, especially when driving heavy resistive loads. Large-value feedback resistors can significantly improve distortion. The THD of the part normally increases at approximately 20 dB per decade, as a function of frequency. Operating the device near or above the full-power bandwidth significantly degrades distortion.
Referencing the load to either supply also improves the part's distortion performance, because only one of the MOSFETs of the push/pull output stage drives the output. Referencing the load to mid-supply increases the part's distortion for a given load and feedback setting. (See the Total Harmonic Distortion vs. Frequency graph in the Typical Operating Characteristics.)
For gains $\geq 10 \mathrm{~V} / \mathrm{V}$, the decompensated devices MAX4249/MAX4255/MAX4256/MAX4257 deliver the best distortion performance, since they have a higher slew rate and provide a higher amount of loop gain for a given closed-loop gain setting. Capacitive loads below 400 pF , do not significantly affect distortion results. Distortion performance remains relatively constant over supply voltages.

Low Noise

The amplifier's input-referred noise voltage density is dominated by flicker noise at lower frequencies, and by thermal noise at higher frequencies. Because the thermal noise contribution is affected by the parallel combination of the feedback resistive network ($\mathrm{RF}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}$, Figure 1), these resistors should be reduced in cases where the system bandwidth is large and thermal noise is dominant. This noise contribution factor decreases, however, with increasing gain settings.
For example, the input noise voltage density of the circuit with $\mathrm{RF}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=11 \mathrm{k} \Omega(\mathrm{Av}=10 \mathrm{~V} / \mathrm{V})$ is $\mathrm{en}_{\mathrm{n}}=$ $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, en can be reduced to $9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ by choosing $R_{F}=10 k \Omega, R_{G}=1.1 \mathrm{k} \Omega(A v=10 \mathrm{~V} / \mathrm{V})$, at the expense of greater current consumption and potentially higher distortion. For a gain of $100 \mathrm{~V} / \mathrm{N}$ with $\mathrm{RF}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{RG}_{\mathrm{G}}=$ $1.1 \mathrm{k} \Omega$, the en is low $(9 \mathrm{nV} / \sqrt{\mathrm{Hz}})$.

Using a Feed-Forward Compensation Capacitor, Cz

The amplifier's input capacitance is 11 pF . If the resistance seen by the inverting input is large (feedback network), this can introduce a pole within the amplifier's bandwidth, resulting in reduced phase margin.

Figure 1. Adding Feed-Forward Compensation

Figure 2a. Pulse Response with No Feed-Forward Compensation

Figure 2b. Pulse Response with 10pF Feed-Forward Compensation

UCSP，Single－Supply，Low－Noise， Low－Distortion，Rail－to－Rail Op Amps

Figure 3．Overdriven Input Showing No Phase Reversal

Figure 4．Rail－to－Rail Output Operation

Figure 5．Capacitive－Load Driving Circuit

Compensate the reduced phase margin by introducing a feed－forward capacitor（Cz）between the inverting input and the output（Figure 1）．This effectively cancels the pole from the inverting input of the amplifier． Choose the value of Cz as follows：

$$
C z=11 \times\left(R_{F} / R_{G}\right)[p F]
$$

In the unity－gain stable MAX4250－MAX4254，the use of a proper Cz is most important for $\mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$ ，and AV $=-1 \mathrm{~V} / \mathrm{V}$ ．In the decompensated MAX4249／MAX4255／ MAX4256／MAX4257，Cz is most important for Av＝ $+10 \mathrm{~V} / \mathrm{V}$ ．Figures 2 a and 2 b show transient response both with and without Cz ．
Using a slightly smaller C_{z} than suggested by the for－ mula above achieves a higher bandwidth at the expense of reduced phase and gain margin．As a gen－ eral guideline，consider using Cz_{z} for cases where RG II R_{F} is greater than $20 \mathrm{k} \Omega$（MAX4250－MAX4254）or greater than $5 \mathrm{k} \Omega$（MAX4249／MAX4255／MAX4256／ MAX4257）．

Applications Information

The MAX4249－MAX4257 combine good driving capa－ bility with ground－sensing input and rail－to－rail output operation．With their low distortion，low noise and low－ power consumption，these devices are ideal for use in portable instrumentation systems and other low－power， noise－sensitive applications．

Ground－Sensing and Rail－to－Rail Outputs

The common－mode input range of these devices extends below ground，and offers excellent common－ mode rejection．These devices are guaranteed not to undergo phase reversal when the input is overdriven （Figure 3）．
Figure 4 showcases the true rail－to－rail output operation of the amplifier，configured with $A v=10 \mathrm{~V} / \mathrm{V}$ ．The output swings to within 8 mV of the supplies with a $10 \mathrm{k} \Omega$ load， making the devices ideal in low－supply－voltage applica－ tions．

Output Loading and Stability Even with their low quiescent current of $400 \mu \mathrm{~A}$ ，these amplifiers can drive $1 \mathrm{k} \Omega$ loads while maintaining excel－ lent DC accuracy．Stability while driving heavy capaci－ tive loads is another key feature．
These devices maintain stability while driving loads up to 400 pF ．To drive higher capacitive loads，place a small isolation resistor in series between the output of the amplifier and the capacitive load（Figure 5）．This resistor improves the amplifier＇s phase margin by iso－ lating the capacitor from the op amp＇s output．

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Figure 6. Isolation Resistance vs. Capacitive Loading to Minimize Peaking (<2dB)

Figure 7. Peaking vs. Capacitive Load
Reference Figure 6 to select a resistance value that will ensure a load capacitance that limits peaking to $<2 \mathrm{~dB}$ (25%). For example, if the capacitive load is 1000 pF , the corresponding isolation resistor is 150Ω. Figure 7 shows that peaking occurs without the isolation resistor. Figure 8 shows the unity-gain bandwidth vs. capacitive load for the MAX4250-MAX4254.

Power Supplies and Layout

The MAX4249-MAX4257 operate from a single +2.4 V to +5.5 V power supply or from dual supplies of $\pm 1.20 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$. For single-supply operation, bypass the power supply with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed close to the VDD pin. If operating from dual supplies, bypass each supply to ground.
Good layout improves performance by decreasing the amount of stray capacitance and noise at the op amp's inputs and output. To decrease stray capacitance, min-

Figure 8. MAX4250-4254 Unity-Gain Bandwidth vs. Capacitive Load
imize PC board trace lengths and resistor leads, and place external components close to the op amp's pins.

UCSP Package Consideration

For general UCSP package information and PC layout considerations, please refer to the Maxim Application Note (Wafer-Level Ultra-Chip-Board-Scale-Package).

UCSP Reliability

The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. CSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a CSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process. Mechanical stress performance is a greater consideration for a CSP package. CSPs are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Table 1 shows the testing done to characterize the CSP reliability performance. In conclusion, the UCSP is capable of performing reliably through environmental stresses as indicated by the results in the table. Additional usage data and recommendations are detailed in the UCSP application note, which can be found on Maxim's website at www.maxim-ic.com.

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Typical Operating Circuit

Table 1. Reliability Test Data

TEST	CONDITIONS	DURATION	NO. OF FAILURES PER SAMPLE SIZE
Temperature Cycle	$-35^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$150 \mathrm{cycles}, 900 \mathrm{cycles}$	$0 / 10,0 / 200$
Operating Life	$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	240 h	$0 / 10$
Moisture Resistance	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$	240 h	$0 / 10$
Low-Temperature Storage	$-20^{\circ} \mathrm{C}$	240 h	$0 / 10$
Low-Temperature Operational	$-10^{\circ} \mathrm{C}$	24 h	$0 / 10$
Solderability	8 h steam age	-	$0 / 15$
ESD	$\pm 2000 \mathrm{~V}, \mathrm{Human}$ Body Model	-	$0 / 5$
High-Temperature Operating Life	$\mathrm{TJ}=+150^{\circ} \mathrm{C}$	168 h	$0 / 45$

UCSP, Single-Supply, Low-Noise,
 Low-Distortion, Rail-to-Rail Op Amps

PART	GAIN BANDWIDTH (MHz)	MINIMUM STABLE GAIN (V/V)	NO. OF AMPLIFIERS PER PACKAGE	SHUTDOWN MODE	PIN-PACKAGE
MAX4249	22	10	2	Yes	10-pin $\mu \mathrm{MAX}, 14$-pin SO
MAX4250	3	1	1	-	5-pin SOT23
MAX4251	3	1	1	Yes	8-pin $\mu \mathrm{MAX} / \mathrm{SO}$
MAX4252	3	1	2	-	8-pin $\mu \mathrm{MAX} / \mathrm{SO}, 8$-pin UCSP
MAX4253	3	1	2	Yes	$\begin{aligned} & \text { 10-pin } \mu \mathrm{MAX}, 14 \text {-pin SO, } \\ & 10 \text {-pin UCSP } \end{aligned}$
MAX4254	3	1	4	-	14-pin SO
MAX4255	22	10	1	-	5-pin SOT23
MAX4256	22	10	1	Yes	8-pin μ MAX/SO
MAX4257	22	10	2	-	8-pin $\mu \mathrm{MAX} / \mathrm{SO}$

Ordering Information (continued)

PART	TEMP. RANGE	PIN/BUMP- PACKAGE	TOP MARK
MAX4251ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4251EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4252ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4252EBA- T^{*}	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 UCSP	AAO
MAX4252EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4253EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4253EBB- T^{*}	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 UCSP	AAK
MAX4253ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4254ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4255EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SOT} 23-5$	ACCJ
MAX4256ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4256EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4257ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4257EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

[^0]Selector Guide

TRANSISTOR COUNTS:
MAX4250/MAX4251/MAX4255/MAX4256: 170
MAX4249/MAX4252/MAX4253/MAX4257: 340
MAX4254: 680

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Pin Configurations (continued)

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

\qquad

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

 Package Information (continued)\qquad

	INCHES		MILLIMETERS				
	MIN	MAX	MIN	MAX	N	MSO12	
D	0.189	0.197	4.80	5.00	8	A	
D	0.337	0.344	8.55	8.75	14	B	
D	0.386	0.394	9.80	10.00	16	C	

NDTES:

1. D\&E DU NDT INCLUDE MDLD FLASH
2. MILD FLASH IR PROTRUSIUNS NDT TI EXCEED .15 mm (.006")
3. LEADS TO BE CIPLANAR WITHIN .102mm (.004")
4. CDNTROLLING DIMENSION: MILLIMETER
5. MEETS JEDEC MSO12-XX AS SHOWN IN ABCVE TABLE
6. $N=$ NUMBER DF PINS
\qquad $21-0041 \mathrm{~A}$

UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

Package Information (continued)

[^0]: *UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.

